

TEAL2.O

ORGANIZATIONAL

REQUIREMENTS

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

1

Development Tools ... 2

Support and Collaboration Tools 4

Moodle Integration .. 6

This document clarifies

the organizational

requirements for the

TEAL2.O development

process. The intended

audience is the developer

teams.

CONTENTS

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

2

Developer teams are required to use the following development tools:

Git

Installing Git on your computer and setting up can be found here. It will be used for version control.

Apache + PHP

Based on your system, you can install Apache2 and PHP.

 Debian: LAMP

 OS X: Mountain Lion Server

 Windows: Apache2 + PHP

 PHP Extensions and libraries

 Enable SSL for Apache (Transitioning to HTTPS)

More information: Installation

Database

Based on you system, setup MySQL Database for Moodle.

Moodle

Manual installation: Quick guide

 Moodle Development Kit (MDK)

Only for Linux and MacOS (not available for Windows).

 Setup

 Sample to create some instances

mdk create --install --engine mysqli --run mindev users makecourse -n stable_master-

mysql

 Docker

Docker containers will be used to allow developers to wrap up an application with all essential parts,

i.e. libraries, dependencies, and ship it all out as one package. By doing this, the developer can be assured

that the application will run on any machine, regardless of any customized settings. Containers also

work in isolation from each other allowing a range of tasks to occur independently.

 IDE

You can setup any of the following IDE and use it for development:

 Sublime

DEVELOPMENT TOOLS

https://docs.moodle.org/dev/Git_for_developers#Installing_Git_on_your_computer
https://docs.moodle.org/310/en/Installing_Moodle_on_Debian_based_distributions#Step_1:_Install_required_packages
https://docs.moodle.org/310/en/Step_by_Step_Installation_on_a_OS_X_Mountain_Lion_Server
https://docs.moodle.org/en/Installing_Apache_on_Windows
https://docs.moodle.org/en/Installing_PHP_on_Windows
https://docs.moodle.org/310/en/PHP#PHP_Extensions_and_libraries
https://docs.moodle.org/en/Transitioning_to_HTTPS
https://docs.moodle.org/en/Category:Installation
https://docs.moodle.org/310/en/MySQL
https://docs.moodle.org/en/Installation_quick_guide
https://github.com/FMCorz/mdk#user-content-for-development
https://docs.moodle.org/dev/Setting_up_Sublime2

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

3

 PhpStorm - Setting_up_PhpStorm for Moodle development.

 Eclipse

 Netbeans

 ViM

 Detailed Moodle Setup

More details about Moodle development environment setup can be found HERE.

There is a YouTube channel that shows clips with guides and tips for the Moodle setup.

>> Back to contents

https://docs.moodle.org/dev/Setting_up_PhpStorm
https://docs.moodle.org/dev/Setting_up_PhpStorm
https://docs.moodle.org/dev/Setting_up_Eclipse
https://docs.moodle.org/dev/Setting_up_Netbeans
https://docs.moodle.org/dev/Setting_up_ViM
https://docs.moodle.org/dev/Setting_up_development_environment
https://www.youtube.com/playlist?list=PLnNniujrnp0kMLvnaahDwoQuOpEV4HzEP

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

4

In a distributed environment, the building of a significantly large platform requires a lot of collaboration

and consistent feedback exchange among participants. In the environment needed to create TEAL2.O
work is distributed across several regions and several institutions within each region. This setup

requires active collaboration during the design and implementation processes. This will create more

engagement among all parties and we will get the best out of all developers, while also applying the

latest trends, best practices and technology choices that will contribute to the overall quality of the

project and will increase the motivation of the participants.

The types of collaborative tools that will be employed in the TEAL2.O development process are:

Documentation and Task Allocation

Cloud-based Atlassian Confluence will be used as it is easy to sign up and it is using matured Wiki-

style documentation with concurrent editing enabled. It is Cloud-based, so no maintenance is required.

Within individual teams, it is recommended to use JIRA for specific task allocation.

Delivery Methodology

It is recommended to start small and iterate through rather than trying to design everything upfront. It

is also absolutely important for all stakeholders to be kept informed of the development of the platform

and all tracking towards their final vision.

Therefore, the developer teams will use Agile, especially Scrum, methodology, with two-week Sprint

across all teams, with Sprint start and end dates aligned.

Source Control

All source code needs to be maintained in a collection of repositories, so that it is accessible by all

participants and everyone gets to contribute towards high-quality code and best coding practices. It is

also important that all code commits are reviewed by at least another person so there is less chance

of human error and so that coding consistency is maintained throughout the platform.

We will keep at least two branches of source code. One branch will be used for the stable version and

the other one will be for the daily build. The stable version will be maintained by a person after the

review of the current version at the end of sprint or per period.

Therefore, the developer teams will use Git-based Project for the entire platform and repositories for

each domain/component/feature.

Continuous Integration and Continuous Deployment (CICD)

All developed code needs to be continuously integrated with the application server and database and

deployed in an environment that is the same as the final environment. This provides early insight into

any software bugs and required changes and reduces the risk of deviation from the ultimate vision.

Therefore, the developer teams will use cloud-based CICD tooling. It does not require any management

other than setting up your own pipelines.

SUPPORT AND

COLLABORATION TOOLS

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

5

Development Environment

A development environment needs to be dedicated to each component development team so they can

continuously develop and test their code without interfering with other teams’ development activities.

Therefore, the developer teams will use cloud-based contained environment for each component

development team, as well as managed roles and groups that are respectively associated with each

component and team. This will give flexibility for a team to be involved in one or many components.

Component Test Environment

The component test environments are needed to make sure any component can be deployed and

tested in the same way as it is developed, and to make sure that there are no environment-related

issues present before it gets promoted to next level for an end-to-end testing.

Therefore, the developer teams will use cloud-based contained environment per each component

across the platform, so this is always kept functional and updated during the development process.

Integrated Environment

This is the final environment where all components expected to be integrated and all the completed

components of the entire platform are always kept functional. It is expected that this environment will

act as a gluing environment over the component environments unless a copy of component

environments is required for different types of testing such as user acceptance, partnership testing,

performance testing, etc.

Therefore, the developer teams will use cloud-based contained environment with specific roles assigned

for each type of activity and these roles may or may not be assumed by the developers who developed

the component. It is expected that most often a nominated group of people will manage this (instead

of the original developers) so it is considered from the user point of view.

>> Back to contents

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

6

The main external constraint for the development teams is the need to comply with Moodle standards

and documentation. This is absolutely necessary as the idea is to develop all features as Moodle plugins.
This will improve their usability and user acceptance. Developer teams will be required to comply with

these constraints.

Although Moodle is open source and we can change anything in Moodle to support our needs, the best

and most sustainable way to extend it is to write a plugin (sometimes called “a module”). This allows

us to incorporate Moodle updates and we will only need to maintain and update the plugins we have

developed. It should be reiterated here that the purpose of ensuring Moodle integration is to allow

users who already use Moodle as their LMS to incorporate the TEAL2.O features through Moodle in

a very convenient way.

Moodle supports a wide range of plugin types. It supports standard and advanced (admin) plugins. The

complete list of plugins type details can be found at Plugin types.

Moodle offers a thorough documentation for development. Developer documentation can be found

here. It has information on several types of API that are needed to connect with its core and other

external systems. These are essential when writing Moodle plugins.

There are several guidelines to follow when developing Moodle plugins. They can be found in dev doc.

In Moodle dev doc, they have listed several development tools that are necessary and/or useful.

Overview of the communication between Moodle components can be found here.

 Standard plugins

Moodle has a general philosophy of modularity. There are nearly 30 different standard types of plugins

and even more sub-plugin types. However, all of these plugin types work in the same way. Blocks and

activities are the only small exceptions.

See Moodle plugins and Moodle sub-plugins for more information.

 Local plugins

The recommended way to add new functionality to Moodle is to create a new standard plugin (module,

block, auth, enrol, etc.).The local plugins are mostly suitable for things that do not fit standard plugins.

 Custom/ local plugins

 Local plugins are used in cases when no standard plugin fits, examples are:

 event consumers communicating with external systems

 custom definitions of web services and external functions

 applications that extend Moodle at the system level (hub server, amos server, etc.)

 new database tables used in core hacks (discouraged)

 new capability definitions used in core hacks

MOODLE INTEGRATION

https://docs.moodle.org/dev/Plugin_types
https://docs.moodle.org/dev/Main_Page
https://docs.moodle.org/dev/Plugins
https://docs.moodle.org/dev/Category:Developer_tools
https://docs.moodle.org/dev/Communication_Between_Components
https://docs.moodle.org/dev/Plugins
https://docs.moodle.org/dev/Subplugins

This project has been funded with support from the European Commission. This publication reflects

the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

7

 custom admin settings

 extending the navigation block with custom menus.

List of differences from normal plugins:

 always executed last during install/upgrade - guaranteed by order of plugins in

get_plugin_types()

 are expected to use event handlers - events are intended for communication core-->plugins

only, local plugins are the best candidates for event handlers

 can add admin settings to any settings page - loaded last when constructing admin tree

 do not need to have any UI - other plugins are usually visible somewhere.

 Coding Guidelines

Developer teams should become thoroughly familiar with Moodle's: coding guidelines. These guidelines

should be strictly followed.

 Tutorial

There is a Tutorial to help you learn how to write plugins for Moodle from start to finish, while showing

you how to navigate the most important developer documentation along the way.

 Moodle 3.9 Database

Full list of tables in Moodle database can be found here.

Moodle Developer Video Tutorial can be accessed from: YouTube channel. It shows clips with guides

and tips for the Moodle development.

>> Back to contents

https://docs.moodle.org/dev/Coding
https://docs.moodle.org/dev/Tutorial
https://moodleschema.zoola.io/
https://www.youtube.com/channel/UCyLdajac9kGnQcxoS61v9fg/playlists

